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1
SYSTEMS AND METHODS FOR MAPPING
COLOR DATA

FIELD OF THE INVENTION

The present invention generally relates to systems and
methods for using a three dimensional Look Up Table (LUT)
to map one color space to another color space. In one aspect,
the invention relates to systems and methods for mapping
from one color space to another by dividing the color space
into three dimensional cubes.

BACKGROUND

Digital photography involves capturing color images and
then converting those color images into numbers. There are
many different ways to turn color images into numbers, and
these may be termed “color models”. For example, “RGB”
is one color model that relies on the three primary colors,
red, green, and blue to be mixed together in differing
amounts to yield all of the remaining colors. Another color
model is known as CMYK, which uses cyan (C), magenta
M), yellow (Y), and black (K), the primary colors of
pigment to create all of the necessary colors.

Each of these different color models can be used to define
a specific color space. For example, to create a three-
dimensional representation of a color space, the amount of
magenta color can be assigned to the representation’s X axis,
the amount of cyan to its Y axis, and the amount of yellow
to its Z axis. This forms a three dimensional color space that
has one three dimensional position for each possible color in
the color space.

However, it is sometimes necessary to convert from one
color space to another. For example, computer monitors
typically display colors using an RGB color space, although
the image being displayed may have been encoded using a
different color space. Many current graphics processors
include functions for transforming colors. However, in many
cases, color transformations involve complex nonlinear
functions, thus making it impractical to transform colors for
large images in real time on a per pixel basis. Color look-up
tables (LUTs) are used to transform input color signal
representations into output color signal representations
which can be applied to drive a color display. Such trans-
formations are necessary because color displays commonly
have non-linear input to output signal transformation char-
acteristics. Ideally, for a given input value, a LUT generates
a corresponding output value that precisely cancels the
effects of a display’s non-linearity so that colors appearing
on the display accurately correspond to the colors defined by
the input color signal representations. The LUT may be
embedded in a hardware imaging system, or may be imple-
mented via image processing software.

A typical LUT contains representations of different input
color signals which are preselected to span the range of input
drive signals that may be encountered during normal opera-
tion of the display. For each input color signal representa-
tion, the LUT also stores either a corresponding output color
signal representation or information which can be used to
derive a corresponding output color signal representation.
As explained below, an input color signal representation is
processed by extracting its closest corresponding output
color signal representation from the LUT, or by using the
information stored in the LUT to derive an output color
signal representation which most closely corresponds to the
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input color signal representation. The extracted or derived
output color signal representation is applied to drive the
display.

Three dimensional look up tables, or “3D LUTs”, have
been used to map one color space on a three dimensional
cube to another. For example, a 3D LUT may be used to map
a sRGB image to the red, green and blue (RGB) signals
required for an OLED panel or other display device that does
not have the color gamut of sRGB.

SUMMARY

One embodiment is a method of mapping an input color
space to an output color space. This embodiment includes
receiving an input point corresponding to a first pixel to be
converted from an input color space to an output color space;
providing a plurality of intermediate tables comprising data
coordinates corresponding to corners within a plurality of
three dimensional cubes in a lattice and color transformation
data associated with each corner, wherein each corner data
coordinate is represented in only one table; determining
which of the plurality of tables in the lattice contains data for
the corners of a cube of interest having the input point; and
accessing the color transformation data for the cube of
interest using the determined tables.

Another embodiment is an integrated circuit for trans-
forming input color space representations into output color
space representations. This embodiment includes a plurality
of intermediate tables comprising data coordinates corre-
sponding to corners within a plurality of three dimensional
cubes in a lattice and color transformation data associated
with each corner, wherein each corner data coordinate is
represented in only one table; instructions configured to
receive an input point corresponding to a first pixel to be
converted from an input color space to an output color space;
instructions configured to determine which of the plurality
of tables in the lattice contains data for the corners of a cube
of interest having the input point; and instructions config-
ured to determine color transformation data for the cube of
interest using the determined tables.

Still another embodiment is a system for mapping an
input color space to an output color space comprising:
means for receiving an input point corresponding to a first
pixel to be converted from an input color space to an output
color space; means for providing a plurality of intermediate
tables comprising data coordinates corresponding to corners
within a plurality of three dimensional cubes in a lattice and
color transformation data associated with each corner,
wherein each corner data coordinate is represented in only
one table; means for determining which of the plurality of
tables in the lattice contains data for the corners of a cube of
interest having the input point; and means for accessing the
color transformation data for the cube of interest using the
determined tables.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is an illustration of a cube of interest, with corners
and tables labeled according to one embodiment of the
present invention.

FIG. 2 is an illustration of a cube of interest adjacent to
the cube of FIG. 1 according to one embodiment of the
present invention.

FIG. 3 is an illustration of a 2x2x2 lattice of cubes
according to one embodiment of the present invention.
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FIG. 4 is an illustration of a 2x2x2 lattice of cubes, with
an example cube of R=1, G=1 and B=0 with indexing shown
according to one embodiment of the present invention.

FIG. 5 is an illustration of a corner to table conversion
process according to one embodiment of the present inven-
tion.

FIG. 6 is a block diagram of a corner cube translation
from a first corner position to a second corner position
according to one embodiment.

FIGS. 7A-D show block diagrams of exemplary table
layouts according to certain embodiments.

FIG. 8 is a block diagram of a system level overview
according to one embodiment of the present invention.

DETAILED DESCRIPTION

Embodiments of the invention relate to systems and
methods for mapping from one color space to another color
space using reference to a three dimensional lookup table
(3DLUT). In some embodiments, the systems and methods
described herein are part of an integrated circuit, such as a
graphic processing unit. One non-limiting example of such
as graphics processing unit is the Adreno® integrated graph-
ics solution that is part of the Snapdragon® line of chipsets
offered from Qualcomm (San Diego, Calif). In these
embodiments, the graphics processing unit may include a
memory having stored instructions for carrying out the steps
described below.

As described below, the 3DLUT is used to store conver-
sion values from a source color space to a destination color
space. As described in more detail below, embodiments
relate to systems and methods for representing a source
color space by dividing the 3DLUT having values for
converting from one color space to another color space into
(N=-1)x(N-1)x(N-1) basic cubes, where N is a number of
grid points in each of the three directions (for red, green and
blue in an RGB image). The objective is to use the lookup
table to convert into a destination, or address color space.
Embodiments of the invention relate to the addressing
method that is used to represent the data within the 3DLUTs.

A 3DLUT is based on a three-dimensional cube, with the
ability to alter a given single red, green or blue output value
based on a single red, green or blue input value change. For
a 3DLUT, consider an example with three axes: red (“R”),
green (“G”) and blue (“B”). The point where all three color
planes intersect in a 3DLUT is considered to be the input
point, for which an output point also exists. In an 8 bit
storage system, there would be 28, or 256 values per color
axis, which may range in value from 0 to 255. For an input
value in the form of (R,G,B) for a single pixel, each axis may
range from 0 to 255, so there may be a total of 256, or
16,777,216 different input combinations to cover all possible
color combinations for a pixel. The objective of the 3DLUT
is to map each of the input values (in this case, approxi-
mately 16 million) to an output value. Accordingly, for a
single pixel that has a possible 16,777,216 different inputs,
a storage system may require approximately 16 megabytes
of storage space.

Embodiments of the invention are directed towards reduc-
ing the input space required by reducing the total number of
input combinations (the approximately 16 million in the
example discussed above). As discussed below, a mecha-
nism has been found for optimally storing and retrieving
look up data for one output component. It is thus applicable
to conversion of any 3 dimensional input space to any
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dimensional output space (e.g. 1 for gray scale output, 3 for
RGB output, 4 for CMYK output) by duplicating the method
for each output component.

Instead of storing every input value along each axis (the
256 values from 0 to 255), only a few points are stored along
each axis depending on the 3DLUT size. For each of the
stored points along each axis, an output value is known.
However, for each input value that falls in a region along an
axis that does not have an input value stored, an interpola-
tion process is used to calculate the output value. As
described in more detail below, the interpolation process
may be performed within a sub-cube (Cube of Interest) of
the input space. The number of cube corners required for
interpolation depends on the interpolation scheme, but at
worst case, it is all 8 corners (for example, in a tri-linear
interpolation) that would need to be known.

The 3DLUT may be written in the form of NxNxN, where
N is an integer designating the size of the 3DLUT, and the
number of known points along each axis. The points along
each of the three axes may be connected in a manner to
create cubes, with the total number of cubes along each axis
totaling (N-1). Therefore, for all three axes, the total number
of cubes may total (N-1)>. Since a cube contains 8 corner
points, the total number of cube corner points would be
8*(N-1).

Consider an example of a 3x3x3 3DLUT for an 8 bit
storage system (256 points along each axis). For a 3x3x3
3DLUT, each axis of R, G and B may store the points 0, 128
and 255 (storing three or “N” points along each axis instead
of storing all points from 0 to 255). The total number of
input points would be 3*3%3=27 (rather than 256%). For each
of those 27 input points, an output value may be immedi-
ately determined. Also, the number of cubes along each axis
would be (N-1), or (3-1) or 2 cubes. The total number of
cubes for all three axes would be (3x1)*=8 cubes. The total
number of cube corner points (since each cube contains 8
corners) would be 8%(3-1)°=64.

For every point that falls outside those known 27 points
(or inside a particular “cube”), an interpolation process is
used to determine the proper output value. Since only 27
points per output component are stored for a 3x3x3 3DLUT,
rather than all 16,777,216 points, storage requirements are
reduced. For a larger sized 3DLUT (e.g., a 17x17x17 point
3DLUT), more points would be stored, and hence less
memory would be saved.

Large 3DLUT’s require a lot of memory, and thus the
storage requirements on a hardware die for a graphics
processor for using many 3DLUT’s quickly becomes pro-
hibitive. To interpolate RGB color values within a 3D cube
in a single clock cycle, up to eight corners of a particular 3D
lattice are required simultaneously. Thus, to map one pixel
per clock, up to 8 memory locations need to be addressed
simultaneously. In current systems, this may be done by
using as many as 8 memories on the die so that each memory
is accessed during the same clock read cycle. However,
these memories often include a lot of common content,
resulting in large areas for implementation. An industry
standard 17x17x17 interpolated look up table requires 17°
values, times at worst case 8 memories.

Embodiments of the present invention relate to a system
that can use a series of three dimensional lookup tables,
wherein each table contains data specific to corners of a
lattice of cubes, and each cube covers a particular subset of
the entire color space. One example is a 2x2x2 lattice of
cubes as shown in FIG. 2, which will be discussed in greater
detail below. This configuration reduces the amount of
memory space required on a chip die, because prior systems
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have duplicated the corner data for adjacent cubes since
adjacent cubes share some of the same corners. These
intermediate look up tables are formed in cubical space. For
each sub-cube, an addressing method has been defined
within embodiments of the invention such that a cube’s
uniqueness is maintained without a need for replicating
redundant data for each cube.

As discussed above, for an NxNxN 3DLUT, there would
be a total of (N-1) cubes, and with 8 corners for each cube.
Thus, the total number of cube corner points in this con-
figuration would be 8%(N-1)°. However, for an adjacent
cube, for example, sitting immediately next to another cube,
four of the corner points would be in common between the
adjacent cubes. In a conventional 3DLUT system, these
common points would be stored separately even though they
held the same values, wasting storage space by storing
redundant data. Embodiments of the present invention there-
fore also relate to exploiting the shared common points for
adjacent cubes, without re-storing them and thus saving
storage space in memory.

Embodiments of the invention relate to an optimal way of
assigning lattice corner data to a series of 8 tables, and a
mechanism for mapping an input value to a lattice cube
(Cube of Interest) and then determining which table and
index within that table the corner data is located, such that
all 8 corners are guaranteed to be in different tables, and all
corner data is stored only once so there is no redundancy in
the stored corner data. Described herein is a very efficient
implementation that is possible if the lattice components
span 2" (two to the power of n) input values. For example,
in the case used for illustration, an 8 bit 3D input space is
represented as a 9x9x9 lattice. Thus each lattice segment
spans 256/(9-1)=32 input values. Therefore, n=5 as each
lattice segment covers 2°=32 input values.

FIG. 1 shows an exemplary mapping of a first lattice cube.
The corners of the lattice cube are labeled A-H. Each corner
is assigned a unique table, labeled 0-7. There are 8! possible
mappings. Which mapping is chosen is irrelevant, but sub-
sequent examples and diagrams assume the illustrated
choice for convenience.

Referring to FIG. 2, consider a 3DLUT cube 201 placed
immediately to the right on the “R” axis of the cube shown
in FIG. 1. To interpolate values from the 3DLUT cube 201,
it should be noted that some of the points in 3DLUT cube
201 are in common with points from the 3DLUT 101. As
shown corner A of the 3DLUT cube 201 is the same point
as corner B of 3DLUT 101 from FIG. 1. As discussed above,
corner B of FIG. 1 is stored in Corner Value Table 1.
Therefore, since corner A from the 3DLUT of FIG. 2 shares
the same point as corner B of the 3DLUT in FIG. 1, corner
A of the lattice cube in FIG. 2 may be read from Corner
Value Table 1 of the 3DLUT 101. This allows systems
implementing this table structure to save integrated chip die
space within a graphics processor while also allowing the
color space values corresponding to the corners of a cube to
be read in a single clock cycle.

The lattice component, or sub-cube, containing the input
RGB value is hereafter referred to as the Cube of Interest
(Col).

FIG. 3 is an illustration of the first 2x2x2 sub-lattice 301.
The axis labels are the same as in FIG. 1 and FIG. 2. FIG.
3 shows that the assignment of tables to sub-cube corners
repeats every 2x2x2 lattice elements. Thus the table con-
taining any particular corner can be determined by where in
the 2x2x2 sub lattice the sub cube resides. Furthermore, the
position of the Col is simgly obtained by the (n+1)” bit (in
the illustrated case, the 67 bit) of the Red, Green and Blue
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input values, as shown in 501 of FIG. 5. This saves further
die area as indexing logic is minimal. One such example is
an 8x24 ROM as suggested in the figure. Embodiments also
provide for further area reduction when one notes that half
of the columns are simply the digital inversion of others.

In order to properly convert color values, a means to find
a corner’s value within a table is needed. The indexing
scheme for embodiments of the invention is now described.

The input space can be considered to be subdivided into
three levels. The smallest are the sub-cubes which span, as
described earlier, 2” input values along each axis. The
middle level is the 2x2x2 sub lattices, each consisting of the
eight sub-cubes described previously. The top most, or
largest level, is the assemblage of 2x2x2 sub-lattices them-
selves. Each level of subdivision is directly inferred by bits
in the input values. Bits 0 through n identify where within
the Col the actual input lies. For simplicity, these ranges are
referred to as Cr, Cg and Cb (“Cx” generically) and can take
on the values of O through (2”-1). In the illustrated example,
n=5, therefor Cr, Cg and Cb can range from 0 to 31.

The second level, the position of the Col within the 2x2x2
lattice, corresponds to the (n+1)* bit. These ranges are
referred to as Lr, Lg and Lb (“Lx” generically). They can
only take on the values of 0 or 1, and therefore Lr, Lg and
Lb can identify one of the 8 sub cubes within the 2x2x2 sub
lattice. As described earlier, in the illustrated example, this
is the 6 bit.

The top level corresponds to the n+2 and more significant
bits. These ranges are referred to as SLr, SLg and SLb
(“SLx” generically). The can range from 0 to 20" 7~1_1
where m is the bit size of the entire input space. In the
illustrated example, m is 8 bits, n is 5 bits, so these ranges
can vary from 0 to 3. Thus the entire illustrated input space
can include 64 (4%) 2x2x2 sub-lattices.

Indexing is achieved by a simple manipulation of SLx and
using the results in a computation which is dependent on
m-n (but is fixed for a particular implementation).

For each table, an entry value for red, green and blue
inputs is determined. Let these 8 values be ar[i], ag[i], and
ab[i] where i ranges from 0-7 to identify a particular table.

The values for ar, ag and ab are determined as follows:
ifLr=0 ifLg=0 if Lb =
ar[0] = Lr>> 1 ag[0] =Lg>>1 ab[0] = Lb >>0
ar[l] =Lr>> 1 ag[l]=Lg>>1 ab[1] =Lb >>0
ar[2] =Lr>> 1 ag[2] =Lg>>1 ab[2] =Lb >>0
ar[3]=Lr>>1 ag[3]=Lg>>1 ab[3] =Lb >>0
ar[4] =Lr>> 1 ag[4] =Lg>>1 ab[4] = Lb >>0
ar[5] =Lr>> 1 ag[5]=Lg>>1 ab[5] =Lb >>0
ar[6] = Lr >> 1 ag[6] =Lg >> 1 ab[6] = Lb >> 0
ar[7] =Lr>> 1 ag[7]=Lg>>1 ab[7] = Lb >> 0
if Lr = ifLg=1 ifLb =1
ar[0] = (Lr + 1) >> 1 ag[0]=(Lg+1)>>1 ab[0] =
(Lb+1)>>0
ar[l] = (Lr-1)>>1 ag[l]=(Lg+1)>>1 ab[1] =
(Lb+1)>>0
ar2] = (Lr - 1) >>1 agl2]=(Lg-1)>>1 ab[2] =
(Lb+1)>>0
ar[3]=(Lr+1)>>1 ag[3]=(Lg-1)>>1 ab[3] =
(Lb+1)>>0
ar[4] = (Lr + 1) >> 1 agl4]=(Lg+1)>>1 ab[4] =
Lb-1)>>0
ar[5]=(Lr-1)>>1 ag[5]=(Lg+1)>>1 ab[5] =
Lb-1)>>0
ar[6] = (Lr - 1) >>1 ag[6] = (Lg - 1)>>1 ab[6] =
Lb-1)>>0
ar[7]=(Lr + 1) >>1 ag[7]=(Lg-1)>>1 ab[7] =
Lb-1)>>0
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These manipulations are specific to the original choice of
corner to table mapping. If a different choice is made, the
manipulations to the red, green and blue entry values would
be swapped.

This manipulation translates the sub cube coordinates for
a corner to the sub cube who’s table contains the actual data.
FIG. 6 graphically illustrates the translation. Shown is a blue
cross section of the RGB cube, showing 4 lattice compo-
nents in each of the red and green directions. Within each of
the lattice components is further divided into 2x2x2 sub
cubes. The circles show the first 25 data points of Table 0,
which contain data for Corner A of all sub cubes. The cube
within which we need to interpolate is shown as shaded.
Although this table contains corner A values, it is seen that
this cube’s Corner C is the same as a diagonally adjacent
corner A. To retrieve this corner value, we translate a cube
580 as shown in FIG. 6 to the corner position 585 (cross-
hatching), according to the table described above. This is
done for each corner. Note that the direction of translation
depends on the corner being retrieved.

An index (or address) into each table is calculated. If the
index into table i is represented as index([i], then the mecha-
nism is as follows:

index[0]=(44xab [O])+(DDxag[0])+ar{0]
index[1]=(BBxab [1])+(EExag/1])+ar{1]
index[2]=(CCxab [2])+(EExag[2])+ar 2]
index[3]=(BBxab [3])+(DDxag[3])+ar{3]
index[4]=(44xab [A])+(DDxag [4])+ar (4]
index[5]=(BBxab [3])+(EExag[5])+ar{5]
index[6]=(CCxab [6])+(EExag[6])+ar 6]

index[7]=(BBxab [11)+(DDxag[7))+ar{7]

Where AA through EE are coefficients that depend on
m-n-1, but are fixed for any particular instance of the 3D
Lut. Let k=m-n-1. k=4 for the illustrated example, and is
the number of 2x2x2 sub lattices that span each dimension
of the input space.

The values of the coefficients are determined as follows:

AA=(k+1)(k+1)=25 in the illustrated example
BB=(k+1)k=20 in the illustrated example
CC=kxk=16 in the illustrated example
DD=k+1=5 in the illustrated example

EE=k=4 in the illustrated example

FIGS. 7A-7D show example table layouts where k=4,
slicing the cubes on B planes, illustrating the first plane. For
example, Table TO (FIG. 7A) contains data for the B lattice
planes 0, 2, 4, 6 and 8. Table A had 25 data points for each
plane times 4 planes for a total of 100 data points. It is seen
by inspection that the formulas described above provide for
the correct index into the tables.

These manipulations are simple and synthesize to small
logic areas. Again, if the original mapping of corners to
tables is different, then the roles of the red, green and blue
inputs are swapped.

FIG. 8 is a diagram showing an overview of a hardware
process for retrieving data for the eight (8) corners of a cube
of interest. Input 601 contains data from the red axis, 603
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8

from the green axis, and 605 from the blue axis. The k most
significant bits from each input axis are fed into a set of eight
(8) indexing modules 607 for determining the index location
in memory containing data for each corner of a cube of
interest. Index block i implements the ar[i], ag[i] and abli]
manipulations and the index[i] calculation described above.
The output of the eight (8) indexing modules 607 input to
eight (8) table modules 612 which store the corner values for
the cube of interest.

Corner logic modules 615 are outputted to a mux hard-
ware block 610. The hardware mux block simply steers the
correct table value to the correct corner.

The least significant n bits of the Red, Green and Blue
inputs represent the position of the input value within the
lattice sub-cube. This data plus the output of the 8 corner
values for the sub-cube are passed to the interpolation unit
for final calculation of the final output value. The final output
value is then calculated and returned.

The technology is operational with numerous other gen-
eral purpose or special purpose computing system environ-
ments or configurations. Examples of well-known comput-
ing systems, environments, and/or configurations that may
be suitable for use with the invention include, but are not
limited to, personal computers, server computers, hand-held
or laptop devices, multiprocessor systems, processor-based
systems, programmable consumer electronics, network PCs,
minicomputers, mainframe computers, distributed comput-
ing environments that include any of the above systems or
devices, and the like.

As used herein, instructions refer to computer-imple-
mented steps for processing information in the system.
Instructions can be implemented in software, firmware or
hardware and include any type of programmed step under-
taken by components of the system.

A processor may be any conventional general purpose
single- or multi-chip processor such as a Pentium® proces-
sor, a Pentium® Pro processor, a 8051 processor, a MIPS®
processor, a Power PC® processor, or an Alpha® processor.
In addition, the processor may be any conventional special
purpose processor such as a digital signal processor or a
graphics processor. The processor typically has conventional
address lines, conventional data lines, and one or more
conventional control lines.

The system is comprised of various modules as discussed
in detail. As can be appreciated by one of ordinary skill in
the art, each of the modules comprises various sub-routines,
procedures, definitional statements and macros. Each of the
modules are typically separately compiled and linked into a
single executable program. Therefore, the description of
each of the modules is used for convenience to describe the
functionality of the preferred system. Thus, the processes
that are undergone by each of the modules may be arbitrarily
redistributed to one of the other modules, combined together
in a single module, or made available in, for example, a
shareable dynamic link library.

The system may be used in connection with various
operating systems such as Linux®, UNIX® or Microsoft
Windows®.

The system may be written in any conventional program-
ming language such as C, C++, BASIC, Pascal, or Java, and
ran under a conventional operating system. C, C++, BASIC,
Pascal, Java, and FORTRAN are industry standard program-
ming languages for which many commercial compilers can
be used to create executable code. The system may also be
written using interpreted languages such as Perl, Python or
Ruby.
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Those of skill will further appreciate that the various
illustrative logical blocks, modules, circuits, and algorithm
steps described in connection with the embodiments dis-
closed herein may be implemented as electronic hardware,
computer software, or combinations of both. To clearly
illustrate this interchangeability of hardware and software,
various illustrative components, blocks, modules, circuits,
and steps have been described above generally in terms of
their functionality. Whether such functionality is imple-
mented as hardware or software depends upon the particular
application and design constraints imposed on the overall
system. Skilled artisans may implement the described func-
tionality in varying ways for each particular application, but
such implementation decisions should not be interpreted as
causing a departure from the scope of the present disclosure.

The various illustrative logical blocks, modules, and
circuits described in connection with the embodiments dis-
closed herein may be implemented or performed with a
general purpose processor, a digital signal processor (DSP),
an application specific integrated circuit (ASIC), a field
programmable gate array (FPGA) or other programmable
logic device, discrete gate or transistor logic, discrete hard-
ware components, or any combination thereof designed to
perform the functions described herein. A general purpose
processor may be a microprocessor, but in the alternative,
the processor may be any conventional processor, controller,
microcontroller, or state machine. A processor may also be
implemented as a combination of computing devices, e.g., a
combination of a DSP and a microprocessor, a plurality of
microprocessors, one or more MiCroprocessors in conjunc-
tion with a DSP core, or any other such configuration.

In one or more example embodiments, the functions and
methods described may be implemented in hardware, soft-
ware, or firmware executed on a processor, or any combi-
nation thereof. If implemented in software, the functions
may be stored on or transmitted over as one or more
instructions or code on a computer-readable medium. Com-
puter-readable media include both computer storage media
and communication media including any medium that facili-
tates transfer of a computer program from one place to
another. A storage medium may be any available media that
can be accessed by a computer. By way of example, and not
limitation, such computer-readable media can comprise
RAM, ROM, EEPROM, CD-ROM or other optical disk
storage, magnetic disk storage or other magnetic storage
devices, or any other medium that can be used to carry or
store desired program code in the form of instructions or
data structures and that can be accessed by a computer. Also,
any connection is properly termed a computer-readable
medium. For example, if the software is transmitted from a
website, server, or other remote source using a coaxial cable,
fiber optic cable, twisted pair, digital subscriber line (DSL),
or wireless technologies such as infrared, radio, and micro-
wave, then the coaxial cable, fiber optic cable, twisted pair,
DSL, or wireless technologies such as infrared, radio, and
microwave are included in the definition of medium. Disk
and disc, as used herein, includes compact disc (CD), laser
disc, optical disc, digital versatile disc (DVD), floppy disk
and Blu-ray disc where disks usually reproduce data mag-
netically, while discs reproduce data optically with lasers.
Combinations of the above should also be included within
the scope of computer-readable media.

The foregoing description details certain embodiments of
the systems, devices, and methods disclosed herein. It will
be appreciated, however, that no matter how detailed the
foregoing appears in text, the systems, devices, and methods
can be practiced in many ways. As is also stated above, it
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should be noted that the use of particular terminology when
describing certain features or aspects of the invention should
not be taken to imply that the terminology is being re-
defined herein to be restricted to including any specific
characteristics of the features or aspects of the technology
with which that terminology is associated.

It will be appreciated by those skilled in the art that
various modifications and changes may be made without
departing from the scope of the described technology. Such
modifications and changes are intended to fall within the
scope of the embodiments. It will also be appreciated by
those of skill in the art that parts included in one embodi-
ment are interchangeable with other embodiments; one or
more parts from a depicted embodiment can be included
with other depicted embodiments in any combination. For
example, any of the various components described herein
and/or depicted in the Figures may be combined, inter-
changed or excluded from other embodiments.

With respect to the use of substantially any plural and/or
singular terms herein, those having skill in the art can
translate from the plural to the singular and/or from the
singular to the plural as is appropriate to the context and/or
application. The various singular/plural permutations may
be expressly set forth herein for sake of clarity.

It will be understood by those within the art that, in
general, terms used herein are generally intended as “open”
terms (e.g., the term “including” should be interpreted as
“including but not limited to,” the term “having” should be
interpreted as “having at least,” the term “includes” should
be interpreted as “includes but is not limited to,” etc.). It will
be further understood by those within the art that if a specific
number of an introduced claim recitation is intended, such
an intent will be explicitly recited in the claim, and in the
absence of such recitation no such intent is present. For
example, as an aid to understanding, the following appended
claims may contain usage of the introductory phrases “at
least one” and “one or more” to introduce claim recitations.
However, the use of such phrases should not be construed to
imply that the introduction of a claim recitation by the
indefinite articles “a” or “an” limits any particular claim
containing such introduced claim recitation to embodiments
containing only one such recitation, even when the same
claim includes the introductory phrases “one or more” or “at
least one” and indefinite articles such as “a” or “an” (e.g.,
“a” and/or “an” should typically be interpreted to mean “at
least one” or “one or more”); the same holds true for the use
of definite articles used to introduce claim recitations. In
addition, even if a specific number of an introduced claim
recitation is explicitly recited, those skilled in the art will
recognize that such recitation should typically be interpreted
to mean at least the recited number (e.g., the bare recitation
of “two recitations,” without other modifiers, typically
means at least two recitations, or two or more recitations).
Furthermore, in those instances where a convention analo-
gous to “at least one of A, B, and C, etc.” is used, in general
such a construction is intended in the sense one having skill
in the art would understand the convention (e.g., “a system
having at least one of A, B, and C” would include but not be
limited to systems that have A alone, B alone, C alone, A and
B together, A and C together, B and C together, and/or A, B,
and C together, etc.). In those instances where a convention
analogous to “at least one of A, B, or C, etc.” is used, in
general such a construction is intended in the sense one
having skill in the art would understand the convention (e.g.,
“a system having at least one of A, B, or C” would include
but not be limited to systems that have A alone, B alone, C
alone, A and B together, A and C together, B and C together,
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and/or A, B, and C together, etc.). It will be further under-
stood by those within the art that virtually any disjunctive
word and/or phrase presenting two or more alternative
terms, whether in the description, claims, or drawings,
should be understood to contemplate the possibilities of
including one of the terms, either of the terms, or both terms.
For example, the phrase “A or B” will be understood to
include the possibilities of “A” or “B” or “A and B.”

While various aspects and embodiments have been dis-
closed herein, other aspects and embodiments will be appar-
ent to those skilled in the art. The various aspects and
embodiments disclosed herein are for purposes of illustra-
tion and are not intended to be limiting.

What is claimed is:

1. A method of mapping an input color space to an output
color space comprising:

receiving an input point corresponding to a first pixel to
be converted from the input color space to the output
color space, the input point corresponding to an input
value in the input color space;

calculating a number of most significant bits of each input
value based at least on a bit size of the input color space
and a number of input values in the input color space;

providing a plurality of tables comprising data coordi-
nates corresponding to corners within a plurality of
three dimensional cubes in a lattice and color transfor-
mation data associated with each corner, wherein each
corner data coordinate is represented in only one table;

determining which of the plurality of tables in the lattice
contains data for the corners of a cube of interest having
the input point, the determination based at least on the
bit size of the input color space and the number of input
values in the input color space;

calculating an index for each of the plurality of tables
containing data for the corners of the cube of interest,
each index calculated based on the number of most
significant bits of each input value; and

accessing the color transformation data for the cube of
interest using the index for each of the plurality of
tables.

2. The method of claim 1, wherein accessing the color

transformation data comprises accessing 3D look up tables.

3. The method of claim 1, wherein the lattice comprises
a 2x2x2 pattern of 3D lookup tables.

4. The method of claim 3, wherein the 2x2x2 pattern
repeats for every 2x2x2 cube of interest.

5. The method of claim 1, wherein the lattice comprises
3 coordinate axes for red, green and blue.

6. The method of claim 1, further comprising interpolat-
ing the color transformation data to provide output color
space values for the input point.

7. An integrated circuit for transforming input color space
representations into output color space representations, com-
prising:

a memory, comprising:

a plurality of tables comprising data coordinates corre-
sponding to corners within a plurality of three dimen-
sional cubes in a lattice and color transformation data
associated with each corner, wherein each corner data
coordinate is represented in only one table; and

one or more processors configured to:

calculate a number of most significant bits of each input
value based at least on a bit size of the input color space
and a number of input values in the input color space;
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receive an input point corresponding to a first pixel to be
converted from an input color space to the output color
space, the input point corresponding to an input value
in the input color space;

determine which of the plurality of tables in the lattice

contains data for the corners of a cube of interest having
the input point, the determination based at least on the
bit size of the input color space and the number of input
values in the input color space;

calculate an index for each of the plurality of tables

containing data for the corners of the cube of interest,
each index calculated based on the number of most
significant bits of each input value; and

determine color transformation data for the cube of inter-

est using the index for each of the plurality of tables.

8. The integrated circuit of claim 7, wherein the integrated
circuit is a graphics processor.

9. The integrated circuit of claim 7, wherein the data
coordinates comprise corners of a 3D lookup table.

10. The integrated circuit of claim 7, wherein the inte-
grated circuit further comprises instructions for interpolating
the color transformation data to provide output color space
values for the input point.

11. The integrated circuit of claim 7, wherein the lattice
comprises 3 coordinate axes for red, green and blue.

12. The integrated circuit of claim 7, wherein the input
point is in a RGB color space.

13. The integrated circuit of claim 12, wherein the deter-
mined color transformation data is in a CMYK color space.

14. A system for mapping an input color space to an
output color space comprising:

means for receiving an input point corresponding to a first

pixel to be converted from the input color space to the
output color space, the input point corresponding to an
input value in the input color space;

means for calculating a number of most significant bits of

each input value based at least on a bit size of the input
color space and a number of input values in the input
color space;

means for providing a plurality of tables comprising data

coordinates corresponding to corners within a plurality
of three dimensional cubes in a lattice and color trans-
formation data associated with each corner, wherein
each corner data coordinate is represented in only one
table;

means for using at least the bit size of the input color

space and the number of input values in the input color
space to determine which of the plurality of tables in
the lattice contains data for the corners of a cube of
interest having the input point;

means for calculating an index for each of the plurality of

tables containing data for the corners of the cube of
interest, each index calculated based on the number of
most significant bits of each value; and

means for accessing the color transformation data for the

cube of interest using the index for each of the plurality
of tables.

15. The system of claim 14, wherein the input point is in
a RGB color space.

16. The system of claim 15, wherein the color transfor-
mation data is in a CMYK color space.

17. The system of claim 14, further comprising means for
interpolating the color transformation data to provide output
color space values for the input point.
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18. The system of claim 14, wherein the system comprises
a mobile electronic device having a graphics processing
engine.
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